
CONIC
FINANCE V2

SECURITY
AUDIT

REPORT

January 31, 2024

TABLE OF CONTENTS

3

3

3

7

8

13

16

17

17

17

17

17

19

20

21

22

23

25

26

27

28

30

32

34

35

36

37

1. INTRODUCTION

1.1 Disclaimer

1.2 Security Assessment Methodology

1.3 Project Overview

1.4 Project Dashboard

1.5 Summary of findings

1.6 Conclusion

2.FINDINGS REPORT

2.1 Critical

2.2 High

2.3 Medium

M-1 Transferring tokens without tainting

M-2 CurveLPOracle is not working

M-3 An incorrect interface version definition

M-4 Unsafe safeApprove and safeIncreaseAllowance.

M-5 GenericOracle public frontrun for initialize()

M-6 ChainlinkOracle fails to return WBTC price, pools with WBTC are not supported

M-7 Reentrancy in GovernanceProxy._executeChange()

M-8 GovernanceProxy DOS via updateDelay()

M-9 GovernanceProxy pending change cannot expire

M-10 LpToken taint griefing

M-11 ChainlinkOracle integration problems

M-12 Controller.updateWeights() can set a total weight differing from one

M-13 BaseConicPool.handleInvalidConvexPid() doesn't set rebalancingRewardActive

when invoking _setWeightToZero()

M-14 Incorrect depeg check in _isDepegged() in ConicEthPool and ConicPool

M-15 BaseConicPool's cachedTotalUnderlying() and usdExchangeRate() might work

incorrectly

M-16 BaseConicPool's usdExchangeRate() might use outdated _cachedTotalUnderlying

1

38

40

41

43

45

45

46

47

48

49

50

51

53

54

55

56

57

58

59

60

61

63

M-17 Incorrect rebalancing for curve pools weighted above 100%-maxDeviation

M-18 Potential rewards loss due to LpTokenStaker switch in RewardManager

M-19 Potential delays in updatePoolWeights() leading to unfair reward distribution in conic pools

M-20 exchangeRate can be manipulated

2.4 Low

L-1 Inaccuracy in rounding

L-2 Reentrancy can be in base pool

L-3 RewardManager's extra reward token might have excessive slippage

L-4 No max length for pools indicated

L-5 Chainlink min&max price is not checked

L-6 CNCLockerV2 griefing

L-7 Multiple CNCMintingRebalancingRewardsHandler can break the targeted CNC TotalSupply

distribution

L-8 No kick motivation in case of many little locks

L-9 Inconsistent logic in rebalancing rewards for withdrawals

L-10 InflationManager.lastUpdate is not used

L-11 Additional checks for switchMintingRebalancingRewardsHandler() are required

L-12 airdropBoost is not checked to be above ONE

L-13 Redundant shutdown check in donation

L-14 previousRewardsHandler may be null

L-15 LpTokenStaker.getTimeToFullBoost() - a full boost can be reached faster in some

cases

L-16 BaseConicPool._setWeightToZero() does not update

Controller.lastWeightUpdate leading to excessive minting of rewards

3. ABOUT MIXBYTES

2

1. INTRODUCTION

1.1 Disclaimer

The audit makes no statements or warranties about utility of the code, safety of the code, suitability of the

business model, investment advice, endorsement of the platform or its products, regulatory regime for the

business model, or any other statements about fitness of the contracts to purpose, or their bug free status.

The audit documentation is for discussion purposes only. The information presented in this report is

confidential and privileged. If you are reading this report, you agree to keep it confidential, not to copy,

disclose or disseminate without the agreement of the Client. If you are not the intended recipient(s) of this

document, please note that any disclosure, copying or dissemination of its content is strictly forbidden.

1.2 Security Assessment Methodology

A group of auditors are involved in the work on the audit. The security engineers check the provided source

code independently of each other in accordance with the methodology described below:

1. Project architecture review:

Stage goals

2. Checking the code in accordance with the vulnerabilities checklist:

Project documentation review.•

General code review.•

Reverse research and study of the project architecture on the source code alone.•

Build an independent view of the project's architecture.•

Identifying logical flaws.•

Manual code check for vulnerabilities listed on the Contractor's internal checklist. The Contractor's

checklist is constantly updated based on the analysis of hacks, research, and audit of the clients' codes.

•

Code check with the use of static analyzers (i.e Slither, Mythril, etc).•

3

Stage goal

Eliminate typical vulnerabilities (e.g. reentrancy, gas limit, flash loan attacks etc.).

3. Checking the code for compliance with the desired security model:

Stage goal

Detect inconsistencies with the desired model.

4. Consolidation of the auditors' interim reports into one:

Stage goals

5. Bug fixing & re-audit:

Detailed study of the project documentation.•

Examination of contracts tests.•

Examination of comments in code.•

Comparison of the desired model obtained during the study with the reversed view obtained during the

blind audit.

•

Exploits PoC development with the use of such programs as Brownie and Hardhat.•

Cross check: each auditor reviews the reports of the others.•

Discussion of the issues found by the auditors.•

Issuance of an interim audit report.•

Double-check all the found issues to make sure they are relevant and the determined threat level is correct.•

Provide the Client with an interim report.•

The Client either fixes the issues or provides comments on the issues found by the auditors. Feedback

from the Customer must be received on every issue/bug so that the Contractor can assign them a status

(either "fixed" or "acknowledged").

•

Upon completion of the bug fixing, the auditors double-check each fix and assign it a specific status,

providing a proof link to the fix.

•

A re-audited report is issued.•

4

Stage goals

6. Final code verification and issuance of a public audit report:

Stage goals

Verify the fixed code version with all the recommendations and its statuses.•

Provide the Client with a re-audited report.•

The Customer deploys the re-audited source code on the mainnet.•

The Contractor verifies the deployed code with the re-audited version and checks them for compliance.•

If the versions of the code match, the Contractor issues a public audit report.•

Conduct the final check of the code deployed on the mainnet.•

Provide the Customer with a public audit report.•

5

Finding Severity breakdown

All vulnerabilities discovered during the audit are classified based on their potential severity and have the

following classification:

Severity Description

Critical Bugs leading to assets theft, fund access locking, or any other loss of funds.

High Bugs that can trigger a contract failure. Further recovery is possible only by
manual modification of the contract state or replacement.

Medium Bugs that can break the intended contract logic or expose it to DoS attacks, but do
not cause direct loss funds.

Low Bugs that do not have a significant immediate impact and could be easily fixed.

Based on the feedback received from the Customer regarding the list of findings discovered by the

Contractor, they are assigned the following statuses:

Status Description

Fixed Recommended fixes have been made to the project code and no longer affect its
security.

Acknowledged The Customer is aware of the finding. Recommendations for the finding are
planned to be resolved in the future.

6

1.3 Project Overview

Conic is a protocol on Ethereum that introduces "Omnipools", which are liquidity pools where users can

deposit a single asset. Each Omnipool allocates liquidity to a set of whitelisted Curve pools.

7

1.4 Project Dashboard

Project Summary

Title Description

Client Conic Finance

Project name Conic Finance v2

Timeline September 4 2023 - January 30 2024

Number of Auditors 3

Project Log

Date Commit Hash Note

04.09.2023 7a66d26ef84f93059a811a189655e17c11d95f5c Commit for the audit

20.11.2023 7b0169ca9d8f1a3301f4b25207c66327f0ff8246 Commit for the re-audit

24.12.2023 5f6549833f0fa41014459755117f16a075bfe3cf Commit for the re-audit 2

18.01.2024 681a4d5f88591a6446362812e86c3858377211a1 Commit for the re-audit 3

Project Scope

The audit covered the following files:

File name Link

contracts/BaseConicPool.sol BaseConicPool.sol

contracts/ConicEthPool.sol ConicEthPool.sol

8

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/ConicEthPool.sol

File name Link

contracts/ConicPool.sol ConicPool.sol

contracts/Controller.sol Controller.sol

contracts/ConvexHandler.sol ConvexHandler.sol

contracts/CurveHandler.sol CurveHandler.sol

contracts/CurveRegistryCache.sol CurveRegistryCache.sol

contracts/LpToken.sol LpToken.sol

contracts/Pausable.sol Pausable.sol

contracts/RewardManager.sol RewardManager.sol

contracts/ConicDebtToken.sol ConicDebtToken.sol

contracts/adapters/CurveAdapter.sol CurveAdapter.sol

contracts/access/GovernanceProxy.sol GovernanceProxy.sol

contracts/access/SimpleAccessControl.sol SimpleAccessControl.sol

contracts/oracles/ChainlinkOracle.sol ChainlinkOracle.sol

contracts/oracles/CrvUsdOracle.sol CrvUsdOracle.sol

contracts/oracles/CurveLPOracle.sol CurveLPOracle.sol

contracts/oracles/GenericOracle.sol GenericOracle.sol

contracts/zaps/EthZap.sol EthZap.sol

libraries/ArrayExtensions.sol ArrayExtensions.sol

libraries/CurvePoolUtils.sol CurvePoolUtils.sol

libraries/MerkleProof.sol MerkleProof.sol

9

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/ConicPool.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/Controller.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/ConvexHandler.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveHandler.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveRegistryCache.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/LpToken.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/Pausable.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/RewardManager.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/ConicDebtToken.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/adapters/CurveAdapter.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/access/GovernanceProxy.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/access/SimpleAccessControl.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/ChainlinkOracle.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/CrvUsdOracle.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/CurveLPOracle.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/GenericOracle.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/zaps/EthZap.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/libraries/ArrayExtensions.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/libraries/CurvePoolUtils.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/libraries/MerkleProof.sol

File name Link

libraries/ScaledMath.sol ScaledMath.sol

libraries/Types.sol Types.sol

contracts/tokenomics/CNCDistributor.sol CNCDistributor.sol

contracts/tokenomics/CNCLockerV2.sol CNCLockerV2.sol

contracts/tokenomics/CNCLockerV2Wrapper.sol CNCLockerV2Wrapper.sol

contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol CNCMintingRebalancingRew
ardsHandler.sol

contracts/tokenomics/InflationManager.sol InflationManager.sol

contracts/tokenomics/InflationRedirectionPool.sol InflationRedirectionPool.sol

contracts/tokenomics/LpTokenStaker.sol LpTokenStaker.sol

10

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/libraries/ScaledMath.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/libraries/Types.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCDistributor.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCLockerV2.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCLockerV2Wrapper.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationManager.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationRedirectionPool.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/LpTokenStaker.sol

Deployments

File name Contract deployed on
mainnet Comment

CNCLockerV3 0x8b318d...025B2c93

CNCMintingRebalancingRewardsHandler 0x53a2f0...54077f9D

ChainlinkOracle 0xd91868...AaFe04B7

ConicDebtToken 0xFB5888...855E928A

Controller 0x2790EC...3DF57EaE

ConvexHandler 0xca432A...6f92D798

CurveAdapter 0x396b4C...c10E898C

CurveHandler 0xBcFacE...C0529b13

CurveLPOracle 0x143f4f...7E951be0

CurveRegistryCache 0x29E06b...636273C0

EthZap 0x78036D...5d0d42B3

GenericOracle 0x865934...C3114E07

GovernanceProxy 0x38A409...576CdaAf

InflationManager 0x05F494...30105B16

LpTokenStaker 0xA52415...FFff0CF9

RewardManager 0x71e182...2FD1C558 RewardManager for ETH
Pool

RewardManager 0x15C606...04119532 RewardManager for USDC
Pool

11

https://etherscan.io/address/0x8b318d1d27ee1E4329d88F0c1E9bc3A1025B2c93
https://etherscan.io/address/0x53a2f0333F7320e862616211b0E44E4354077f9D
https://etherscan.io/address/0xd918685c42A248Ff471ef87e005718C4AaFe04B7
https://etherscan.io/address/0xFB588886715a263F69c1edd4e84e0Ac1855E928A
https://etherscan.io/address/0x2790EC478f150a98F5D96755601a26403DF57EaE
https://etherscan.io/address/0xca432AbffBe075CC3fA63a8FA9Fb933d6f92D798
https://etherscan.io/address/0x396b4Ca70A59Cf44F26C89e525212F9fc10E898C
https://etherscan.io/address/0xBcFacE618465F7D35cE82992FbE92e63C0529b13
https://etherscan.io/address/0x143f4fbc7b9d4235B2D8a74E905598dA7E951be0
https://etherscan.io/address/0x29E06bBA53f73E271859214D9D87a1bE636273C0
https://etherscan.io/address/0x78036Dc2785EaCD76CCa4aB6EAc6b8105d0d42B3
https://etherscan.io/address/0x865934bEa4Ffe1B51260a99455B1561BC3114E07
https://etherscan.io/address/0x38A40942cB275D941309d5Af28b44d27576CdaAf
https://etherscan.io/address/0x05F494E6554fab539873dcF92A4D2F6930105B16
https://etherscan.io/address/0xA5241560306298efb9ed80b87427e664FFff0CF9
https://etherscan.io/address/0x71e1829c1f45e8a02931A4721719b8cD2FD1C558
https://etherscan.io/address/0x15C606C60AfcfaA8e57777d947C40E9204119532

File name Contract deployed on
mainnet Comment

RewardManager 0xBf65Fa...ee60F9Ad RewardManager for
crvUSD Pool

ConicPool 0x80a360...3FA64316 Pool for USDC

ConicPool 0x89dc3E...dE591988 Pool for crvUSD

ConicEthPool 0x336707...496f3543 Pool for ETH

LpToken 0x58649E...29A394d3 cncETH

LpToken 0xd02bCd...8F5e035e cncUSDC

LpToken 0x9961Bd...3f564A8c cncCRVUSD

12

https://etherscan.io/address/0xBf65FadD5335380A7d5Aa01f1676af22ee60F9Ad
https://etherscan.io/address/0x80a3604977270B7Ef2e637f9Eb78cE1c3FA64316
https://etherscan.io/address/0x89dc3E9d493512F6CFb923E15369ebFddE591988
https://etherscan.io/address/0x3367070ed152e2b715eef48D157685Cf496f3543
https://etherscan.io/address/0x58649Ec8adD732ea710731b5Cb37c99529A394d3
https://etherscan.io/address/0xd02bCdBE1d7790bDc4E1c365BFF8269D8F5e035e
https://etherscan.io/address/0x9961BdBE8B7091E584c2bF9D0a160C583f564A8c

1.5 Summary of findings

Severity # of Findings

Critical 0

High 0

Medium 20

Low 16

ID Name Severity Status

M-1 Transferring tokens without tainting Medium Fixed

M-2 CurveLPOracle is not working Medium Fixed

M-3 An incorrect interface version definition Medium Acknowledged

M-4 Unsafe safeApprove and
safeIncreaseAllowance.

Medium Fixed

M-5 GenericOracle public frontrun for initialize() Medium Fixed

M-6 ChainlinkOracle fails to return WBTC price, pools with
WBTC are not supported

Medium Acknowledged

M-7 Reentrancy in
GovernanceProxy._executeChange()

Medium Fixed

M-8 GovernanceProxy DOS via updateDelay() Medium Fixed

M-9 GovernanceProxy pending change cannot expire Medium Acknowledged

M-10 LpToken taint griefing Medium Acknowledged

13

M-11 ChainlinkOracle integration problems Medium Fixed

M-12 Controller.updateWeights() can set a total
weight differing from one

Medium Fixed

M-13 BaseConicPool.handleInvalidConvexPid()

doesn't set rebalancingRewardActive when
invoking _setWeightToZero()

Medium Acknowledged

M-14 Incorrect depeg check in _isDepegged() in
ConicEthPool and ConicPool

Medium Acknowledged

M-15 BaseConicPool's cachedTotalUnderlying() and
usdExchangeRate() might work incorrectly

Medium Acknowledged

M-16 BaseConicPool's usdExchangeRate() might use
outdated _cachedTotalUnderlying

Medium Fixed

M-17 Incorrect rebalancing for curve pools weighted above
100%-maxDeviation

Medium Fixed

M-18 Potential rewards loss due to LpTokenStaker switch in
RewardManager

Medium Acknowledged

M-19 Potential delays in updatePoolWeights() leading
to unfair reward distribution in conic pools

Medium Acknowledged

M-20 exchangeRate can be manipulated Medium Acknowledged

L-1 Inaccuracy in rounding Low Fixed

L-2 Reentrancy can be in base pool Low Fixed

L-3 RewardManager's extra reward token might have
excessive slippage

Low Acknowledged

L-4 No max length for pools indicated Low Fixed

L-5 Chainlink min&max price is not checked Low Acknowledged

L-6 CNCLockerV2 griefing Low Fixed

L-7 Multiple CNCMintingRebalancingRewardsHandler can
break the targeted CNC TotalSupply distribution

Low Acknowledged

14

L-8 No kick motivation in case of many little locks Low Fixed

L-9 Inconsistent logic in rebalancing rewards for
withdrawals

Low Acknowledged

L-10 InflationManager.lastUpdate is not used Low Fixed

L-11 Additional checks for
switchMintingRebalancingRewardsHandler()

are required

Low Fixed

L-12 airdropBoost is not checked to be above ONE Low Fixed

L-13 Redundant shutdown check in donation Low Acknowledged

L-14 previousRewardsHandler may be null Low Fixed

L-15 LpTokenStaker.getTimeToFullBoost() - a full
boost can be reached faster in some cases

Low Fixed

L-16 BaseConicPool._setWeightToZero() does not
update Controller.lastWeightUpdate leading
to excessive minting of rewards

Low Fixed

15

1.6 Conclusion

The audited scope includes well-written smart contracts. Test coverage is sufficient. After the audit 20

Medium and 16 Low severity findings have been discovered. All the findings have been confirmed and

acknowledged or fixed by the client.

16

2.FINDINGS REPORT

2.1 Critical

Not Found

2.2 High

Not Found

2.3 Medium

M-1 Transferring tokens without tainting

Severity Medium

Status Fixed in 7b0169ca

Description

If _minimumTaintedTransferAmount is large enough, then an attacker can do deposit/withdraw in

a single transaction in small amounts.

For example:

This attack is unlikely, but if _minimumTaintedTransferAmount is large, it is a possibility.

Recommendation

LpToken.sol#L74•

LpToken.sol#L81•

A hacker makes a deposit into ConicPool.•

Transfer several times with small amounts (less than _minimumTaintedTransferAmount) to another

account.

•

The hacker invokes withdraw from the new account.•

17

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/LpToken.sol#L74
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/LpToken.sol#L81

We recommend adding a max limit to the _minimumTaintedTransferAmount.

Client's commentary

We agree that this in an issue and have addresses this here: 46b6a34d

Given that the likleihood is low and would require malicious governance, we think this should be a low

severity issue (impact: medium, likelihood:low).

18

https://github.com/ConicFinance/protocol/commit/46b6a34d580dc5e9357a158dc2823250b15377e3

M-2 CurveLPOracle is not working

Severity Medium

Status Fixed in 7b0169ca

Description

_chainlinkOracle is the first in sequence in GenericOracle.getUSDPrice.

Since there is already a crvUSD oracle on the mainnet, CurveLPOracle will never be used. Current

Aggregator on mainnet for crvUSD: 0x145f040dbCDFf4cBe8dEBBd58861296012fCB269

(https://data.chain.link/ethereum/mainnet/stablecoins/crvusd-usd).

Recommendation

We recommended reprioritising the selection of Oracles (customOracles should be first). If necessary

Client's commentary

We have addressed this issue, following your recommendation here:

3c75e414

GenericOracle.sol#L34•

19

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://data.chain.link/ethereum/mainnet/stablecoins/crvusd-usd
https://github.com/ConicFinance/protocol/commit/3c75e41456da507b9a7a224221c877c49edd52d5
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/GenericOracle.sol#L34

M-3 An incorrect interface version definition

Severity Medium

Status Acknowledged

Description

If interfaceVersion_ == 0, _version_0_remove_liquidity_one_coin is called in

CurveHandler.

The following pools were found in the project with 0:

All pools are considered as version 0, but in REN_BTC there is a remove_liquidity_one_coin method.

So, there is no need to use _version_0_remove_liquidity_one_coin for REN_BTC.

Recommendation

We recommend revising the pool versioning process (CurveRegistryCache.sol#L235).

Client's commentary

We have double-checked this and it seems that the only advantage of using

remove_liquidity_one_coin are gas savings.

For simplicity and because we currently do not use any BTC pools in the protocol (and don't plan to do

so for now), we continue to use the interfaces as it was.

Given that this is not a security vulnerability, but a gas efficiency consideration, we would consider this

issue low severity or "informational".

CurveHandler.sol#L183•

REN_BTC (0x930541...eDf0895B)•

SUSD_DAI_USDT_USDC (0xA5407e...C53efBfD)•

20

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveRegistryCache.sol#L235C14-L235C34
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveHandler.sol#L183
https://etherscan.io/address/0x93054188d876f558f4a66B2EF1d97d16eDf0895B
https://etherscan.io/address/0xA5407eAE9Ba41422680e2e00537571bcC53efBfD

M-4 Unsafe safeApprove and safeIncreaseAllowance.

Severity Medium

Status Fixed in 7b0169ca

Description

Version 4.8.0 of safeApprove and safeIncreaseAllowance (SafeERC20.sol#L46-L68) is currently in

use.

USDT approve method (it checks that allowance is zero):

function approve(

 address _spender,

 uint _value

) public onlyPayloadSize(2 * 32) {

...

 require(!((_value != 0) && (allowed[msg.sender][_spender] != 0)));

 allowed[msg.sender][_spender] = _value;

...

}

In the current implementation, if the ConicPool is left with an extra allowance for CurvePool, then users

will not be able to withdraw their tokens due to revert.

Recommendation

We recommend doing approve(0) before calling the main approve (currently OpenZeppelin contracts

have this logic SafeERC20.sol#L52).

Client's commentary

The allowance is always fully consumed, so we do not see a case where that could actually be an

issue.

Therefore, we think that the severity should be "informational" or "best practices".

We updated the code to use forceApprove in order to follow best practices: 32a4099d

CurveHandler.sol#L246•

CurveHandler.sol#L266•

21

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v4.8.0/contracts/token/ERC20/utils/SafeERC20.sol#L46-L68
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/a714fe6dbd84d1f8016cce922fb719494afa9ba2/contracts/token/ERC20/utils/SafeERC20.sol#L52
https://github.com/ConicFinance/protocol/commit/32a4099d33a3747a522966e62da820b7a07699bf
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveHandler.sol#L246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveHandler.sol#L266

M-5 GenericOracle public frontrun for initialize()

Severity Medium

Status Fixed in 7b0169ca

Description

The first call of GenericOracle.initialize() can be made by anyone.

As a result, anyone can frontrun the official initialize() call and set malicious oracles, which is extremely

dangerous for the whole project.

Recommendation

We recommend implementing an onlyOwner modifier, the same way as for initialize() functions in

Conroller andRewardManager.

Client's commentary

We updated the code to protect initialize(): 83b83e92.

GenericOracle.sol#L20-L24•

22

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/83b83e922255ced0aec6111874736df66e892acd
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/GenericOracle.sol#L20-L24

M-6 ChainlinkOracle fails to return WBTC price, pools with WBTC are not supported

Severity Medium

Status Acknowledged

Description

oracle.getUSDPrice(wbtc) returns the error "token not supported"

As the result, it is impossible to add Curve pools with WBTC.

But, Conic mentions pools with WBTC in tests:

ConicTest.sol#L39

...

address internal constant REN_BTC = 0x9305...895B;

address internal constant BBTC = 0x071c...8F4b;

...

Also, there are many Curve pools with WBTC, some of them supported by Convex as well.

BTC is a reserved denomination with the address: 0xbBbBBBBbbBBBbbbBbbBbbbbBBbBbbbbBbBbbBBbB

So WBTC price feed can be received only by:

WBTC = 0x514910771AF9Ca656af840dff83E8264EcF986CA

BTC = 0xbBbBBBBbbBBBbbbBbbBbbbbBBbBbbbbBbBbbBBbB

wbtcbtc = _feedRegistry.getFeed(WBTC, BTC)

It will be WBTC/BTC price; then it must be adjusted to BTC/USD price:

BTC = 0xbBbBBBBbbBBBbbbBbbBbbbbBBbBbbbbBbBbbBBbB

USD = address(840)

btcusd = _feedRegistry.getFeed(WBTC, BTC)

Recommendation

We recommend implementing additional calculations in ChainlinkOracle._getPrice() and

ChainlinkOracle.isTokenSupported() in order to support Curve Pools with WBTC.

Denominations.sol#L7•

23

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/test/ConicTest.sol#L39
https://github.com/smartcontractkit/chainlink/blob/55c7baa1181aaa04026b4a1043117596c4e31e5a/contracts/src/v0.8/Denominations.sol#L7

Client's commentary

We are not currently supporting any BTC pools in the protocol (nor do we plan to do so in the near

future).

Should we want to support BTC pools in the future, we can add an additional custom oracle to support

these calculations.

Given this, we would consider this issue low severity (impact: low, liklihood: low).

24

M-7 Reentrancy in GovernanceProxy._executeChange()

Severity Medium

Status Fixed in 7b0169ca

Description

The Check-Effect-Interaction pattern is violated in the GovernanceProxy.executeChange() function:

function _executeChange...

 ...

 for(uint256 i; i < change.calls.length; i++) {

 change.calls[i].target.functionCall(change.calls[i].data);

 }

 ...

 _endChange(change, index, Status.Executed);

GovernanceProxy.sol#L168-L172

Change is marked as completed only after all the change.calls.

If there is a call in the change.calls list to a contract with a hacker's hook (for example, an ERC-777

token), this could allow a malicious actor to repeatedly invoke executeChange() for this list of calls,

leading to unforeseen consequences.

Recommendation

Move _endChange() before the calls to adhere to the Check-Effect-Interaction pattern.

Client's commentary

We have addressed this issue, implementing your recommendation, here:

a91d1e59

25

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/access/GovernanceProxy.sol#L168-L172
https://github.com/ConicFinance/protocol/commit/a91d1e59737680bc53dc33661897d6616500fb51

M-8 GovernanceProxy DOS via updateDelay()

Severity Medium

Status Fixed in 7b0169ca

Description

If an admin mistakenly calls updateDelay(someImportantFunction, SUPER_BIG_NUMBER) in

GovernanceProxy, restoring a lower delay for someImportantFunction becomes impossible. To execute

updateDelay(someImportantFunction, LOW_NUMBER), one would need to wait out the initially set

SUPER_BIG_NUMBER delay:

function _computeDelay(

 bytes calldata data

) internal view returns (uint64) {

 bytes4 selector = bytes4(data[:4]);

 // special case for `updateDelay`, we want to set the delay

 // as the delay for the current function for which the delay

 // will be changed, rather than a generic delay for `updateDelay` itself

 // for all the other functions, we use their actual delay

 if (selector == GovernanceProxy.updateDelay.selector) {

 bytes memory callData = data[4:];

 (selector,) = abi.decode(callData, (bytes4, uint256));

 }

 return delays[selector];

}

GovernanceProxy.sol#L196-L210

In this situation, function calls might effectively get blocked for an excessively long period.

Recommendation

We recommended capping the maximum delay at a reasonable number.

Client's commentary

We have addressed this issue, implementing your recommendation, here:

b980b71a

26

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/access/GovernanceProxy.sol#L196-L210
https://github.com/ConicFinance/protocol/commit/b980b71a827355a3c85f0d9325cece9f6d252341

M-9 GovernanceProxy pending change cannot expire

Severity Medium

Status Acknowledged

Description

One can imagine a situation where a pending change is created, locked by a delay, but over time becomes

irrelevant and no one executes it. Or, for instance, over time it becomes evident that the requested change

reverts upon attempted execution, and it's forgotten.

This could result in lingering transactions accumulating in pendingChanges, which might not only

become irrelevant in the future but even detrimental (e.g., setting outdated thresholds for certain

contracts). Any such change could be executed by any user in any order, leading to adverse effects.

Recommendation

Implement an expiration mechanism for pending changes.

Client's commentary

We agree that this is an issue and are currently working on a fix.

Update:

After internal discussion, we reached the conclusion that a proposal should always be executed

unless it is explicitly cancelled.

If any actions are order dependent, they should be part of the same proposal, so we accept the fact

that proposals could be executed in a different order from the one in which they have been proposed

or they became ready.

Therefore, we are happy with the current design.

27

M-10 LpToken taint griefing

Severity Medium

Status Acknowledged

Description

The LpToken.sol cannot be minted or burned by a user if someone has transferred an amount of LpToken

to them greater than controller.getMinimumTaintedTransferAmount(token):

function _ensureSingleEvent(address ubo, uint256 amount) internal {

 if(

 !controller.isAllowedMultipleDepositsWithdraws(ubo) &&

 amount > controller.getMinimumTaintedTransferAmount(address(this))

) {

 require(

 _lastEvent[ubo] != block.number,

 "cannot mint/burn twice in a block");

 ...

LpToken.sol#L81

This means a malicious actor could send a minimum number of tokens to any "whale" (a user with a large

balance) trying to make a large deposit or withdraw, thereby blocking their operation.

For example, this could be used to attack users who want to urgently burn their LP tokens to repay an

overcollateralized debt and avoid liquidation. This can also be used to block MEV bots that utilize mint or

burn lp tokens in their path strategies. It also removes the ability to buy LP tokens on an exchange and burn

them in a single transaction.

It's worth noting that by default, controller.getMinimumTaintedTransferAmount(token) equals

zero, so the attacker would only need to pay for the gas to block a specific user's operations.

Recommendation

We recommended allowing users to burn LP tokens received before the current taint.

For instance, if in the first block a user mints 1000 tokens for themselves, and then in the second block

they receive another token, it would be desirable in the second block to still allow them to burn the initial

1000 tokens. However, it should revert if they try to burn more than that amount.

28

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/LpToken.sol
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/LpToken.sol#L81

Client's commentary

In practice, we will make the minimum tainted value around ~1k USD, making griefing prohibitive

enough and channelling a large flash loan through many accounts almost impossible.

29

M-11 ChainlinkOracle integration problems

Severity Medium

Status Fixed in 7b0169ca

Description

There are several shortcomings in the current implementation of the interaction with Chainlink.

1. ChainlinkOracle.isTokenSupported() returns true if a Chainlink feed exists, but it does

not consider the case when it has been abandoned (not updated for a long time):

function isTokenSupported(...) external view override returns (bool) {

 ...

 try _feedRegistry.getFeed(...) returns (IAggregatorV2V3) {

 return true;

 } catch Error(string memory) {

 try _feedRegistry.getFeed(...) returns (IAggregatorV2V3) {

 return true;

ChainlinkOracle.sol#L52-L56

2. ChainlinkOracle._getPrice() uses the deprecated answeredInRound, see

https://docs.chain.link/data-feeds/api-reference#latestrounddata

function _getPrice(

 ...

 require(answeredInRound_ >= roundID_, "stale price");

ChainlinkOracle.sol#L83

3. ChainlinkOracle._getPrice() doesn't check for stale prices.

Each feed has a heartbeat, and for each call to latestRoundData() the equation updatedAt <

block.timestamp - heartbeat must be checked, see

https://ethereum.stackexchange.com/questions/133890/chainlink-latestrounddata-security-fresh-data-

check-usage.

4. ChainlinkOracle.getUSDPrice() has a check for price_ != 0 which should actually be

price_ > 0 since it is int256 and could hypothetically be negative:

30

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/ChainlinkOracle.sol#L52-L56
https://docs.chain.link/data-feeds/api-reference#latestrounddata
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/ChainlinkOracle.sol#L83
https://docs.chain.link/data-feeds/feed-registry/feed-registry-functions#latestrounddata
https://ethereum.stackexchange.com/questions/133890/chainlink-latestrounddata-security-fresh-data-check-usage

function _getPrice

 ...

 require(price_ != 0, "negative price");

ChainlinkOracle.sol#L82

Recommendation

Recommendations are as follows:

1. Add a check for abandoned pools in isTokenSupported().

2. Remove the deprecated answeredInRound check.

3. Implement checks for stale prices.

4. Ensure the price_ > 0.

Client's commentary

We have addressed this issue, following your recommendation, here:

e0485c53

31

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/ChainlinkOracle.sol#L82
https://github.com/ConicFinance/protocol/commit/e0485c533418afceb7da82db19b887c639a73a17

M-12 Controller.updateWeights() can set a total weight differing from one

Severity Medium

Status Fixed in 7b0169ca

Description

When invoking Controller.updateWeights() or BaseConicPool updateWeights(), it's possible

to pass in duplicate pools so that the sum of the weights in the provided list would equal one. However, the

resulting sum of BaseConicPool.weights can be either greater or less than one.

The problem lies in the fact that when setting the weights, only the number of pools and the total weight of

the provided list are checked, but the final weights in BaseConicPool.weights are not verified:

function updateWeights(

 PoolWeight[] memory poolWeights

) external onlyController {

 ...

 require(poolWeights.length == _pools.length(), "invalid pool weights");

 ...

 for (uint256 i; i < poolWeights.length; i++) {

 ...

 uint256 newWeight = poolWeights[i].weight;

 total += newWeight;

 ...

 require(total == ScaledMath.ONE, "weights do not sum to 1");

BaseConicPool.sol#L528

As a result, for example, if there are pools A 25%, B 25%, C 25%, D 25%, and the admin mistakenly

calls function updateWeights(A 70%, B 10%, B 10%, B 10%), both checks would pass:

require(poolWeights.length == _pools.length(), "invalid pool weights");

...

require(total == ScaledMath.ONE, "weights do not sum to 1");

Subsequently, the pool weights would become (A 70%, B 10%, C 25%, D 25%), which totals 130%.

Recommendation

32

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L528

It is recommended to check the invariant that the sum of BaseConicPool.weights is equal to one at

the end of the function.

Client's commentary

We have addressed this issue, by enforcing pool uniqueness in the function, here:

f21f0175

Since this would require malicious governance, we would consider this a low severity issue (impact:

medium, likelihood: low).

33

https://github.com/ConicFinance/protocol/commit/f21f01750dccde09b5f678accb60d94cc5597d4b

M-13 BaseConicPool.handleInvalidConvexPid() doesn't set
rebalancingRewardActive when invoking _setWeightToZero()

Severity Medium

Status Acknowledged

Description

Generally, when weights are changed in BaseConicPool, rebalancingRewardActive gets updated. For

instance, BaseConicPool.handleDepeggedCurvePool() invokes _setWeightToZero() and sets

rebalancingRewardActive = true. The updateWeights() function also sets

rebalancingRewardActive = !_isBalanced(allocatedPerPool, totalAllocated).

However, the handleInvalidConvexPid() function invokes _setWeightToZero() but, unlike

handleDepeggedCurvePool(), it doesn't alter the rebalancingRewardActive variable. This seems

to be a deviation from the intended logic.

Recommendation

We recommended revising the logic behind _setWeightToZero() and possibly updating

rebalancingRewardActive within it, similarly to how it's done for both

handleDepeggedCurvePool() and handleInvalidConvexPid().

Client's commentary

This is the intended behaviour.

If this happens, it means that LPs will be missing out on some rewards for a brief period of time,

which we thought does not justify paying rebalancing rewards.

In this scenario, accelerated rebalancing is not necessary, since there is no risk to LPs (as it is the

case in a depeg event).

34

M-14 Incorrect depeg check in _isDepegged() in ConicEthPool and ConicPool

Severity Medium

Status Acknowledged

Description

_isDepegged() checks the percentage change between the current token price and its cached value,

which is updated every time updateWeights() is invoked. This implies that _isDepegged() checks the

token price deviation not from a benchmark value but from the last call to updateWeights().

It's worth noting that at the moment of invoking updateWeights(), the price can be abnormal. For

instance, if the depeg threshold is 10%, and the token price deviates by 9%, then _isDepegged() will

assume a 9% deviation. If updateWeights() is subsequently invoked, the cache will update to the new

price, and _isDepegged() will consider the token price deviation as 0%. If the token price then rises by

another 9% (accumulatively 18% from the starting point), _isDepegged() will consider it a mere 9%

deviation, assuming it's within the norm when in fact, it's not.

Recommendation

We recommend that you rework the architecture so that the _isDepegged() function accounts for the

full deviation of the token from the benchmark value, not just from the last updateWeights() call.

Client's commentary

The Curve pools are picked during the LAVs and we would expect that the chosen pools are not

depegged at that point. This means that they only risk would be some depeg just when we want to

execute this LAV, which is unlikely.

We consider the token value at the time of the last LAV to be a better benchmark value than the

intended peg of stable coins included in the pools.

Consequently, we do not consider this an issue.

35

M-15 BaseConicPool's cachedTotalUnderlying() and usdExchangeRate() might
work incorrectly

Severity Medium

Status Acknowledged

Description

Both cachedTotalUnderlying() and usdExchangeRate() utilize _cachedTotalUnderlying in

their computations. The _cachedTotalUnderlying variable gets updated in the withdraw() function.

Note that underlyingWithdrawn_ could be less than the complete extracted value from curve pools due

to slippage, meaning the actual total underlying value might be less than totalUnderlying_.

In such scenarios, _cachedTotalUnderlying is inaccurately computed, making its value appear larger

than it should be. This affects the computations in cachedTotalUnderlying() and

usdExchangeRate().

Recommendation

Client's commentary

We are aware that the _cachedTotalUnderlying can be off slightly and have accepted this risk.

We are fine with this because of the way in which this value is used. We do not use the cached value

for anything where the actual amount is critical to the protocol. It is only used for distributing CNC,

where light variances are considered acceptable and do not impact the protocol negatively. We do not

want to obtain a fresh underlying balance like we do in the depositFor function because this would

make the withdraw function significantly more gas expensive.

We would therefore not agree that this is an issue.

36

M-16 BaseConicPool's usdExchangeRate() might use outdated
_cachedTotalUnderlying

Severity Medium

Status Fixed in 7b0169ca

Description

usdExchangeRate() uses _cachedTotalUnderlying for its calculation:

function usdExchangeRate()

 external view virtual override returns (uint256) {

 uint256 underlyingPrice =

 controller.priceOracle().getUSDPrice(address(underlying));

 return _exchangeRate(_cachedTotalUnderlying).mulDown(underlyingPrice);

BaseConicPool.sol#L304-L308

However, _cachedTotalUnderlying can be arbitrarily outdated, which might render

usdExchangeRate() inaccurate.

Recommendation

We recommend using cachedTotalUnderlying(), which accounts for

_TOTAL_UNDERLYING_CACHE_EXPIRY, instead of _cachedTotalUnderlying,

Client's commentary

We have implemented the recommendation: 40d16566

37

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L304-L308
https://github.com/ConicFinance/protocol/commit/40d16566c27ec97161cdd66c09d7888756025aa5

M-17 Incorrect rebalancing for curve pools weighted above 100%-maxDeviation

Severity Medium

Status Fixed in 7b0169ca

Description

In situations where the weight of the curve pool + maxDeviation exceeds 100%, all deposits go to that

curve pool, while the balance of other curve pools remains unchanged.

Let's look in detail at why this happens:

function _getDepositPool

 ...

 for (uint256 i; i < poolsCount_; i++) {

 ...

 uint256 allocatedUnderlying_ = allocatedPerPool[i];

 uint256 targetAllocation_ =

 totalUnderlying_.mulDown(weights.get(pool_));

 if (allocatedUnderlying_ >= targetAllocation_) continue;

 uint256 maxBalance_ =

 targetAllocation_ +

 targetAllocation_.mulDown(_getMaxDeviation());

 uint256 maxDepositAmount_ = maxBalance_ - allocatedUnderlying_;

 if (maxDepositAmount_ <= maxDepositAmount) continue;

BaseConicPool.sol#L271-L272

In this function:

The expression is as follows:

max balance = total underlying * weight * (1 + max deviation)

totalUnderlying_: total underlying tokens after deposit;•

targetAllocation_: how many underlying tokens, in an ideal scenario, ConicPool should deposit in

the curve pool;

•

maxBalance_: the maximum allowable amount to be stored in the curve pool.•

38

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L271-L272

If weight * (1 + max deviation) is above 100%, then the pool's maximum balance will always

accommodate any new deposit.

Examples of such situations:

Note, that the problem arises only when rebalancingRewardActive is false:

function _getMaxDeviation() internal view returns (uint256) {

 return rebalancingRewardActive ? 0 : maxDeviation;

}

By default, the maxDeviation in the new Conic Pool is set to 2%:

uint256 public maxDeviation = 0.02e18; // 2%

However, an admin can increase this value up to 20%:

uint256 internal constant _MAX_DEVIATION_UPPER_BOUND = 0.2e18;

Recommendation

When changing weights or deviation, we recommended ensuring that any weight is strictly less than 100%

- maxDeviation.

Client's commentary

We partially agree with this issue.

In a case where the deviation plus the allocated weight of a pool can accommodate all deposits,

allocating all deposits to that pool is intended behaviour.

However, we agree that the weight of a pool plus the deviation should never exceed 100% and have

addressed this issue here:

82058c9b

Given that this issue would require a governance mistake and no funds would be at risk, we would

consider this issue low severity (impact: low, likelihood: low).

pool weight 99%, max deviation 2%•

pool weight 84%, max deviation 20%•

39

https://github.com/ConicFinance/protocol/commit/82058c9b74cdebc7714b25f70ca2a99334b0cd12

M-18 Potential rewards loss due to LpTokenStaker switch in RewardManager

Severity Medium

Status Acknowledged

Description

Changing the LpTokenStaker via Controller.switchLpTokenStaker() results in all users losing a

portion of their rewards in RewardManager. It happens because after changing the LpTokenStaker,

RewardManager._accountCheckpoint() will use a new address for which

LpTokenStaker.getUserBalanceForPool(conicPool, account) will return zero. As a result, the

accumulated integral for the staking period will be reset to zero as the balance variable is zero:

function _updateAccountRewardsMeta(

 bytes32 key,

 address account,

 uint256 balance

)

 ...

 uint256 share =

 balance.mulDown(

 meta.earnedIntegral - meta.accountIntegral[account]

);

Recommendation

We recommend ensuring user rewards in RewardManager remain unaffected during transitions.

Client's commentary

We accept this issue and choose not to make any changes.

It should be very unlikley that we need to switch the LPTokenStaker.

(impact:medium, likelihood:low).

RewardManager.sol#L229-L234•

40

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/RewardManager.sol#L229-L234

M-19 Potential delays in updatePoolWeights() leading to unfair reward distribution
in conic pools

Severity Medium

Status Acknowledged

Description

InflationManager.updatePoolWeights() updates currentPoolWeights proportionally to the

dollar-equivalent of funds locked in conic pools. This value is used in

getCurrentPoolInflationRate() to determine how much CNC should be minted for a specific conic

pool.

However, the system lacks guarantees for the timely invocation of updatePoolWeights(). Currently, this

function is called from two places: Controller.shutdownPool() and

InflationManager._executeInflationRateUpdate().

Controller.shutdownPool() is not designed for frequent execution.

InflationManager._executeInflationRateUpdate() will trigger an update no more often than

_INFLATION_RATE_PERIOD = 365 days:

function _executeInflationRateUpdate() internal {

 if (

 block.timestamp >= lastInflationRateDecay + _INFLATION_RATE_PERIOD

) {

 updatePoolWeights();

 currentInflationRate =

 currentInflationRate.mulDown(_INFLATION_RATE_DECAY);

 lastInflationRateDecay = block.timestamp;

 }

}

This means that the updatePoolWeights() function must be called manually which can occur with a

significant delay relative to the real distribution of funds in different conic pools. This will lead to an unfair

distribution of rewards.

Recommendation

InflationManager.sol#L193-L200•

41

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationManager.sol#L193-L200

We recommend implementing an automated and more frequent mechanism for invoking the

updatePoolWeights() function to ensure timely and fair distribution of rewards across conic pools.

Client's commentary

In the current implementation, we prioritize gas efficiency over accuracy of the inflation weights.

This function is called regularly by the protocol maintainers and can be called altruistically by any

user.

We would therefore consider this issue low severity as the inaccuracies do not end up being

significant in practice.

42

M-20 exchangeRate can be manipulated

Severity Medium

Status Acknowledged

Description

When creating a pool, the user has an option to change the exchangeRate directly by sending tokens to

ConicPool.

Test example:

vm.startPrank(bb8); # hacker is setting `exchangeRate`

conicPool.deposit(2, 0, false);

underlying.transfer(address(conicPool), 2 * 10 ** 18);

vm.stopPrank();

now totalSupply = 1,

exchangeRate = 2000000000000000001000000000000000000 (~10**36)

victims try to deposit to ConicPool and will get zero lp tokens

vm.startPrank(r2);

underlying.approve(address(conicPool), 10 ** 18);

conicPool.deposit(10 ** 18, 0, false);

vm.stopPrank();

vm.startPrank(bb8); # withdraw all tokens from pool by hacker

conicPool.withdraw(1, 0);

This way an attacker can make the use of omnipool unprofitable at the very beginning.

Recommendation

There are different approaches on how to solve the Inflation Attack problem. Some of the approaches

along with their pros and cons, can be found in the OpenZeppelin github issue:

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706.

One way to resolve the problem is to use virtual dead shares, as implemented in the latest OpenZeppelin

ERC-4626 vault:

BaseConicPool.sol#L290•

ERC4626.sol#L200•

43

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L290
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/51294b7480fd13e716207a621ac1d55a6290d56d/contracts/token/ERC20/extensions/ERC4626.sol#L200

In case this particular fix is chosen, it is recommended to use a virtual offset of 1000

(UniswapV2Pair.sol#L120), as this will make the residual possibility of griefing practically unattainable.

However, one of the simplest solutions is making a deposit immediately after the deployment so that the

exchangeRate is adjusted.

Client's commentary

This issue can be easily prevented by seeding the pool immediately after it is deployed.

For all pools we deploy, we follow that approach.

We would only add the pool to the controller after it is seeded.

Therefore, we chose not to implement any additional changes to address this potential issue.

Given that this issue can only occur in a fairly unlikely scenario and cannot affect the protocol as we

check the pool before adding it, we disagree with the severity rating of this issue and believe it should

be low severity (impact: low, likelihood: low).

ERC4626.sol#L207•

44

https://github.com/Uniswap/v2-core/blob/ee547b17853e71ed4e0101ccfd52e70d5acded58/contracts/UniswapV2Pair.sol#L120
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/51294b7480fd13e716207a621ac1d55a6290d56d/contracts/token/ERC20/extensions/ERC4626.sol#L207

2.4 Low

L-1 Inaccuracy in rounding

Severity Low

Status Fixed in 7b0169ca

Description

underlyingAmount =

 usdAmount.convertScale(18, decimals).divDown(underlyingPrice);

In the computePoolValueInUnderlying method, if decimals is small, accuracy in rounding is lost.

Recommendation

We recommend calling convertScale after divDown.

Client's commentary

We followed the recommendation in the following commit: 119ad8d5

CurveAdapter.sol#L103•

45

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/119ad8d5ff27abe0aaa11b2bea49be032f35ae6d
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/adapters/CurveAdapter.sol#L103

L-2 Reentrancy can be in base pool

Severity Low

Status Fixed in 7b0169ca

Description

It is supposed to use basePool in CurveHandler to work with LP tokens.

However, there is no read-only reentrancy check for base pools (ConicEthPool.sol#L48).

In some situations, where the underlying pool contains ETH, reentrancy is possible. Currently, only 3CRV is

used.

Recommendation

We don't recommend using the base pool which contains the read-only reentrant.

Client's commentary

Although we do not have an immediate use case for it, we added a protection against read-only

reentrancy in the ConicEthPool: ef134f5a

CurveHandler.sol#L74•

46

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/ConicEthPool.sol#L48
https://github.com/ConicFinance/protocol/commit/ef134f5aec2205e9d9bb8628b8a9e8e0fe6c3fe2
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/CurveHandler.sol#L74

L-3 RewardManager's extra reward token might have excessive slippage

Severity Low

Status Acknowledged

Description

If the extra reward token is not supported by conic oracles, its slippage is set to zero upon sale:

function _minAmountOut

 ...

 if (!oracle_.isTokenSupported(tokenIn_) ||

 !oracle_.isTokenSupported(tokenOut_)

) {

 return 0;

 }

Such high slippage might be excessive for quality, highly liquid tokens.

Recommendation

This is a known issue and developers stated that they accept the risk.

By default, when adding new tokens via addExtraReward(), it's recommended to ensure they are

supported by the oracle to prevent administrators from accidentally forgetting to add the necessary oracle.

It might make sense to have a separate function, addExtraRewardWithBadSlippage(), for adding

illiquid unsupported tokens.

Client's commentary

We are aware of this and accept this risk. It is rare for us to receive additional reward tokens, and

when we do, it is rare that they do not have a Chainlink oracle. So in this very rare case that we have

an additional reward token with no oracle, we accept the risk of slippage on these swaps.

RewardManager.sol#L504-L506•

47

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/RewardManager.sol#L504-L506

L-4 No max length for pools indicated

Severity Low

Status Fixed in 7b0169ca

Description

Ethereum gaslimit will not allow Conic Pool operation if too many pools are added.

Marginal gas consumption for additional pools:

So, the approximate max length is 22 pools.

Recommendation

We recommend indicating some desired limit for the length of pools.

Client's commentary

We limited the maximum number of pools to 10: 4b4fd4f3

~ 820 000 for deposits•

~ 1 300 000 for withdrawals•

48

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/4b4fd4f3ca0b730ef6bfc3f800aec454629e0ff7

L-5 Chainlink min&max price is not checked

Severity Low

Status Acknowledged

Description

Some chainlink aggregators have min and max price. The price of an asset cannot go outside the range of

min and max price.

When the reported answer is close to reaching reasonable minimum and maximum

limits ... it can alert you to potential market events.

Recommendation

According to Chainlink's recommendation:

Configure your application to detect and respond to extreme price volatility or

prices that are outside of your acceptable limits.

Client's commentary

Thanks for recommending this. We are not currently using this feature.

ChainlinkOracle.sol#L68•

https://docs.chain.link/data-feeds#check-the-latest-answer-against-reasonable-limits•

49

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/oracles/ChainlinkOracle.sol#L68
https://docs.chain.link/data-feeds#check-the-latest-answer-against-reasonable-limits

L-6 CNCLockerV2 griefing

Severity Low

Status Fixed in 7b0169ca

Description

CNCLockerV2 allows for locking 0 wei in favor of any account. If a hacker creates enough 0 wei locks in

favor of a victim over the maximum period _MAX_LOCK_TIME = 240 days, the voteLocks[user]

array will become too large to iterate over in a loop.

This will break all functions that iterate over this loop:

It can also potentially cause a revert in _getLockIndexById() which leads to the breaking of:

Recommendation

We recommend limiting the maximum number of locks for a user and ensuring that the lock amount

exceeds a certain minimum.

Client's commentary

This has been fixed by following your recommendations here 4b7b7b12.

lockFor(relock_=true)•

executeAvailableUnlocksFor()•

unlockableBalance()•

unlockableBalanceBoosted()•

totalRewardsBoost()•

totalVoteBoost()•

executeUnlocks()•

_relock()•

relockMultiple()•

relock()•

kick()•

50

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/4b7b7b12f24777091999f103c19d663413c0851f

L-7 Multiple CNCMintingRebalancingRewardsHandler can break the targeted CNC
TotalSupply distribution

Severity Low

Status Acknowledged

Description

The TotalSupply is strictly capped with 10 mln tokens with zero mints if trying to mint above this value.

But InflationManager does not control the whole inflation.

In fact, there can be many CNCMintingRebalancingRewardsHandler contracts, each with custom

_MAX_REBALANCING_REWARDS.

There are a few evidences that there can be many CNCMintingRebalancingRewardsHandler

contracts:

As a result, it is a risk that some new CNCMintingRebalancingRewardsHandler can break the

targeted total supply structure.

In addition, all current minters sum up to 100%:

1. 25% InflationManager (LPTokenStaker)

InflationManager.sol#L24-L26

2. 56% PreMint, Treasury, Airdrop

CNCToken.sol#L18-L22

3. 19% one RebalancingHandler

CNCMintingRebalancingRewardsHandler.sol#L28

So, there is no place for additional RebalancingHandlers.

Recommendation

We recommend removing the logic allowing multiple RebalancingHandlers.

If it is necessary, we recommend using CNCToken.inflationMintedRatio() as a limitation and an

estimation for a correct minting amount allowed to all RebalancingHandlers.

CNCToken.sol#L30•

InflationManager.sol#L126•

InflationManager.sol#L162-L167•

51

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationManager.sol#L24-L26
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCToken.sol#L18-L22
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol#L28
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCToken.sol#L30
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationManager.sol#L126
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationManager.sol#L162-L167

Client's commentary

There should only ever be a single instance of CNCMintingRebalancingRewardsHandler at any

time.

We added support for multiple reward handlers to be able to reward users in different ways for

rebalancing the pools (e.g. reduce the CNC distribution and add payments using treasury funds) but

we do not have any such plans just yet and we have not implemented any other type of reward

handlers yet.

Therefore, this should not be an issue.

52

L-8 No kick motivation in case of many little locks

Severity Low

Status Fixed in 7b0169ca

Description

A kick() caller receives a kickPenalty which is voteLocks[].amount * 10%.

If this reward does not exceed the gas cost, no one would have the motivation to call kick(). It is possible

when voteLocks[].amount is small enough.

So, users are motivated to make many smaller locks to protect their locks from kicking.

Recommendation

We recommend introducing a function of kicking many expired voteLocks in one call.

Client's commentary

This has been fixed by following your recommendations here 90c4c14e.

CNCLockerV2.sol#L342•

53

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/90c4c14ec4358c189cc9ecd8160240da71dcad4f
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCLockerV2.sol#L342

L-9 Inconsistent logic in rebalancing rewards for withdrawals

Severity Low

Status Acknowledged

Description

Both deposits and withdrawals can decrease deviation from target weights.

But there are two ways to treat withdrawals.

1. in BaseConicPool

_handleRebalancingRewards() is only called in depositFor() and not called for withdrawals.

2. in CNCMintingRebalancingRewardsHandler

rebalance() here makes both a deposit and a withdrawal and sums up the effect of deviation decrease

from both operations.

Thus, withdrawals are rewarded here.

Recommendation

We recommend keeping logic consistent and consider the introduction of

_handleRebalancingRewards() for withdrawals in BaseConicPool. It will also allow switching

rebalancingRewardActive when withdrawals push deviation below 2%.

Client's commentary

This is a design decision. We are happy to incentivize deposits, as well as rebalancing, since the

former increases TVL, while the latter does not have any effect on it. However, we do not want to

incentivize withdrawals, since they decrease TVL.

We therefore so not consider this an issue.

BaseConicPool.sol#L183-L189•

CNCMintingRebalancingRewardsHandler.sol#L150-L152•

54

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L183-L189
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol#L150-L152

L-10 InflationManager.lastUpdate is not used

Severity Low

Status Fixed in 7b0169ca

Description

It only is set once on deployment, works as a timestamp of deployment, and is never used by other

contracts.

Recommendation

We recommend removing lastUpdate.

Client's commentary

This has been fixed by following your recommendations here a822fa51.

InflationManager.sol#L43•

55

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/a822fa5160929e518ec3e3d035110cb8dcb1234f
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/InflationManager.sol#L43

L-11 Additional checks for switchMintingRebalancingRewardsHandler() are
required

Severity Low

Status Fixed in 7b0169ca

Description

Switching a RebalancingManager requires a transaction flow described in the comments.

switchMintingRebalancingRewardsHandler() perfectly checks that the old handler is removed.

In addition, the new handler must be deployed and initialized correctly - it can be checked onchain as well.

Recommendation

We recommend using switchMintingRebalancingRewardsHandler() as a high-level function which

performs all necessary checks for correct switching leaving no room for mistakes:

1. checking that the newRebalancingRewardsHandler is added for at least one pool in the

InflationManager.

As a result, it will be the check that the transaction flow described in the comments is made

correctly.

2. checking that the new handler:

Client's commentary

This has been fixed by following your recommendations here 915f3ff2.

CNCMintingRebalancingRewardsHandler.sol#L167-L173•

CNCMintingRebalancingRewardsHandler.sol#L179-L185

However, it does not check that the new handler is correctly added to the InflationManager.

As a result, there is a risk of switching to a handler that does not exist in the InflationManager.

•

has the correct previousRewardsHandler set•

is initialized correctly and has imported totalCncMinted from the previous handler•

56

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/915f3ff26051f275c344684f8d8be65bc006c4d3
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol#L167-L173
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol#L179-L185

L-12 airdropBoost is not checked to be above ONE

Severity Low

Status Fixed in 7b0169ca

Description

claimAirdropBoost() in CNCLocker only checks that amount is not above 3.5e18

But it is also important that amount is above 1e18.

Otherwise, _airdroppedBoost[] would store an amount below 1e18.

In this case:

1. it will never be deleted because lockFor() only deletes if airdropBoost_ is above 1e18

CNCLockerV2.sol#L110-L114

2. airdropBoost() would return the value below 1e18 when even no airdrop boost means at least

1e18

Recommendation

We recommend writing _airdroppedBoost[] as 1e18 in claimAirdropBoost() if amount is below

1e18.

Client's commentary

This has been fixed by following your recommendations here 1db2878e.

CNCLockerV2.sol#L372-L380•

CNCLockerV2.sol#L416-L418•

57

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCLockerV2.sol#L110-L114
https://github.com/ConicFinance/protocol/commit/1db2878e26738f498ca506bc684c3e8192c040bf
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCLockerV2.sol#L372-L380
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCLockerV2.sol#L416-L418

L-13 Redundant shutdown check in donation

Severity Low

Status Acknowledged

Description

CNCDistributor has the donate() function with the check protecting from donations if the contract is

shutdown.

But in fact, it is still possible to donate via direct CNC transfers to CNCDistributor.

Thus, the shutdown check does not make much sense.

Recommendation

If blocking CNC transfers to the CNCDistributor is necessary, we recommend checking

CNCDistributor shutdown within the CNCToken contract and reverting transfer attempts when

shutdown.

Client's commentary

CNCDistributor.donate is typically only called by maintenance, so this is to make sure that we do

not call this after having shut down the distributor.

Hence, we do not consider this an issue.

CNCDistributor.sol#L57-L60•

58

https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCDistributor.sol#L57-L60

L-14 previousRewardsHandler may be null

Severity Low

Status Fixed in 7b0169ca

Description

previousRewardsHandler is used to count how much totalCncMinted was minted by the previous

CNCMintingRebalancingRewardsHandler.

If this is a new contract, then zero is transmitted. However, the initialize method does not have such a

check.

Recommendation

We recommend adding previousRewardsHandler != address(0x0).

Client's commentary

This has been fixed by following your recommendations here b380ce0d.

CNCMintingRebalancingRewardsHandler.sol#L64•

59

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/b380ce0d77c7578cff195cece41a629a31bd586e
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol#L64

L-15 LpTokenStaker.getTimeToFullBoost() - a full boost can be reached faster
in some cases

Severity Low

Status Fixed in 7b0169ca

Description

A full boost in this function only accounts for the time boost:

The function only calculates +30 days since userBoost.lastUpdated

But in fact, given stakeBoost, totalBoost can be reached much faster than 30 days if capped with

MAX_BOOST amount.

For example, given max available stakeBoost of 5, timeBoost will reach the cap in ~3 days, not 30

days.

Recommendation

If this behavior is not desired, we recommend taking into account stakeBoost when calculating the

function.

Client's commentary

We have removed this function, as it was not used. d0746bc9.

LpTokenStaker.sol#L136-L140•

60

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/commit/d0746bc9b86843530a100f55fc5943f1ae46a773
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/LpTokenStaker.sol#L136-L140

L-16 BaseConicPool._setWeightToZero() does not update
Controller.lastWeightUpdate leading to excessive minting of rewards

Severity Low

Status Fixed in 7b0169ca

Description

Rewards for pool rebalancing when calling BaseConicPool.depositFor() grow proportionally to

Controller.lastWeightUpdate:

function computeRebalancingRewards

 ...

 uint256 lastWeightUpdate =

 controller.lastWeightUpdate(conicPool);

 uint256 elapsedSinceUpdate =

 uint256(block.timestamp) - lastWeightUpdate;

 return

 (elapsedSinceUpdate *

 cncRebalancingRewardPerDollarPerSecond).mulDown(

 deviationDelta.convertScale(decimals, 18)

);

The value of lastWeightUpdate is updated when calling Controller.updateWeights(). However, in

case of a depeg of one of the curve pools, the weight of the respective curve pool is directly zeroed through

the BaseConicPool._setWeightToZero() call inside handleDepeggedCurvePool(), which also

triggers the rebalancing reward distribution process:

function handleDepeggedCurvePool(address curvePool_) external override

 ...

 setWeightToZero(curvePool);

 rebalancingRewardActive = true;

The _setWeightToZero() function doesn't update Controller.lastWeightUpdate, so the

elapsedSinceUpdate multiplier when calculating rewards isn't reset.

The _setWeightToZero() function zeros out the weight of one curve pool and proportionally increases

the weights of all other pools, creating an immediate imbalance between the target and actual volume of

CNCMintingRebalancingRewardsHandler.sol#L128•

BaseConicPool.sol#L575-L577•

61

https://github.com/ConicFinance/protocol/commit/7b0169ca9d8f1a3301f4b25207c66327f0ff8246
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/tokenomics/CNCMintingRebalancingRewardsHandler.sol#L128
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L575-L577

funds in each of the pools. However, there's no actual relative imbalance between the pools since all

weights have increased proportionally.

function _setWeightToZero(address zeroedPool) internal

 ...

 for (uint256 i; i < curvePoolLength_; i++)

 ...

 uint256 newWeight_ = pool_ == zeroedPool ? 0 :

 weights.get(pool_).mulDown(scaleUp_);

 weights.set(pool_, newWeight_);

Nevertheless, right after this event, large rewards will be minted for any new depositors because the

elapsedSinceUpdate multiplier remains large, and the deviationDelta value is calculated in

absolute, not relative numbers.

Recommendation

We recommended that you update the Controller.lastWeightUpdate when calling

BaseConicPool._setWeightToZero().

Client's commentary

It is intentional in the design of Conic that CNC reblancing rewards are high when the

handleDepeggedCurvePool function is called.

We want these to be high, so the Omnipool is balanced again quickly, removing liquidity from the

depegged pool before there is additional risk to LPs. The way that we achieve this is by intentionally

not resetting the lastWeightUpdate such that the CNC rewards are high.

For the very unlikely case where updateWeights would not be called according to schedule (which is

currently 2 weeks), we added a check to make sure that the elapsed time when distributing rewards is

bounded: 8537dd4a

Given that the design is originally intended and that the time is bounded to two weeks under normal

protocol operation, we think this issue should be low severity (impact: medium, likelihood: low).

BaseConicPool.sol#L589-L590•

62

https://github.com/ConicFinance/protocol/commit/8537dd4a716695b07262d14acd5acbd0bc30d657
https://github.com/ConicFinance/protocol/blob/7a66d26ef84f93059a811a189655e17c11d95f5c/contracts/BaseConicPool.sol#L589-L590

3. ABOUT MIXBYTES

MixBytes is a team of blockchain developers, auditors and analysts keen on decentralized systems. We

build opensource solutions, smart contracts and blockchain protocols, perform security audits, work on

benchmarking and software testing solutions, do research and tech consultancy.

Contacts

https://github.com/mixbytes/audits_public

https://mixbytes.io/

hello@mixbytes.io

https://twitter.com/mixbytes

63

https://github.com/mixbytes/audits_public
https://mixbytes.io/
mailto:hello@mixbytes.io
https://twitter.com/mixbytes

